NUMERICAL SOLUTION OF PROBLEMS PERTAINING TO A SUBMERGED JET IN POWER-LAW FLUIDS

V. A. Bubnov

Inzhenerno-Fizicheskii Zhurnal, Vol. 14, No. 3, pp. 500-504, 1968
UDC 532.135

Power-law fluids are defined as the particular case of Stokes fluids for low Truesdell numbers. To describe motion in a submerged jet we employ boundary-layer type equations which are numerically solved on a Ural-2 computer.
§1. Definition of power-law fluids. In accordance with the classical concepts, stresses in a fluid are functions of the spatial velocity gradient. According to the principle of objectivity formulated by Noll [1], the stressed tensor in the rheological equation of state must be an isotropic function of the strain-rate tensor

$$
\begin{equation*}
p_{i j}=f\left(s_{i j}\right) \tag{1}
\end{equation*}
$$

Fluids described by Eq. (1) are subdivided into two classes: Reiner-Rivlin fluids which exhibit a relaxation time, and Stokes fluids which exhibit no relaxation time [2]. For Stokes fluids Eq. (1) assumes the particular form

$$
\begin{gather*}
p_{i j}=f\left(s_{i j}, \mu_{0}, \theta_{0}\right) \\
\text { if } s_{i j}=0, \text { then } p_{i j}=-p \delta_{i j} . \tag{2}
\end{gather*}
$$

Here μ_{0} is the constant of the medium, and it is expressed in units of viscosity; θ_{0} is a characteristic temperature (for example, the boiling point); p is the hydrostatic pressure; $\delta_{i j}$ is the Kronecker delta.

Following the usual rule for expansion in series in powers of the tensor and using the Cayley-Hamilton identity, instead of (2) we will have

$$
\begin{equation*}
p_{t j}=F_{0} \delta_{i j}+F_{1} s_{i j}+F_{2} s_{i k} s_{k j} \tag{3}
\end{equation*}
$$

where for an incompressible fluid $F_{0}=-p ; F_{1}$ and F_{2} are functions of the strain-rate tensor invariance I_{2},

n	0.5	0.7	1.0	2.0	3.0	4.0
$f^{\prime}(0)$	0.18650	0.31100	0.45430	0.71166	0.83024	0.89794
γ	5.36187	2.44280	1.48305	1.00000	0.95455	0.95785

I_{3} and the constants μ_{0} and θ_{0}.
Since the complexes

$$
\begin{equation*}
E_{0}=\frac{F_{0}}{p}, E_{1}=\frac{F_{1}}{\mu_{0}}, E_{2}=\frac{F_{2} p}{\mu_{0}^{2}} \tag{4}
\end{equation*}
$$

are dimensionless, for an incompressible fluid Eq. (3) assumes the following dimensionless form:

$$
\begin{equation*}
p_{i j}=p E_{0} \delta_{i j}+\left(1+\frac{\mu_{0} s_{i j}}{p} \frac{E_{2}}{E_{1}}\right) \mu_{0} E_{1} s_{i j} \tag{5}
\end{equation*}
$$

In formula (5) the dimensionless parameter $\mathrm{Tr}=$ $=\mu_{0} \mathrm{~S}_{\mathrm{ij}} / \mathrm{p}$, known as the Truesdell number, is the criterion for the appearance of nonlinear effects.

Velocity profiles in jet for certain values of n : 1) $\mathrm{n}=0.5$; 2) 1 ; 3) 3 .

In the following we will examine the case $\mathrm{Tr} \ll 1$, when the tensorial nonlinearity in (3) can be neglected, and the nonlinearity will be determined by the coefficient $\mathrm{F}_{1}=f\left(\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}\right)$. For simplicity we will study the case

$$
\begin{equation*}
F_{1}=\mu_{1}\left|2 I_{2}\right|^{\frac{n-1}{2}} \tag{6}
\end{equation*}
$$

The validity of this relationship has been confirmed experimentally in [3]. The rheological equation (3) now assumes the following form:

$$
\begin{equation*}
p_{i j}=-p+\mu_{1}\left|2 I_{2}\right|^{\frac{n-1}{2}} s_{i j} . \tag{7}
\end{equation*}
$$

In dimensionless form, the boundary-layer equations have the following form [4]:

$$
\begin{align*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} & =-\frac{\partial p}{\partial x}+\frac{\partial}{\partial y}\left\{\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}\right\} \\
\frac{\partial p}{\partial y} & =0, \frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{8}
\end{align*}
$$

82. The problem of the submerged jet. The possibility of utilizing equations of the boundary-layer type to model motion in a submerged jet has been validated in [5]. Here $\partial \mathrm{p} / \partial \mathrm{x} \equiv 0$ and system (8) assumes the form

$$
\begin{gather*}
u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}=\frac{\partial}{\partial y}\left\{\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}\right\} \\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{9}
\end{gather*}
$$

Without carrying out the complete group analysis of system (9), let us write out the infinitesimal operators of the similarity group, with respect to which we have the invariance

$$
\begin{aligned}
& X_{1}=\frac{1}{2-n} u \frac{\partial}{\partial u}+\frac{n-1}{2-n} v \frac{\partial}{\partial v}+x \frac{\partial}{\partial x} \\
& X_{2}=\frac{n+1}{2-n} u \frac{\partial}{\partial u}+\frac{2 n-1}{2-n} v \frac{\partial}{\partial v}-y \frac{\partial}{\partial y}
\end{aligned}
$$

Let us find the invariant-group solution determined from the combination of the operators X_{1} and X_{2}. According to the general method [6], this solution must be determined from the condition

$$
\begin{equation*}
k X_{1}+X_{2} \equiv 0 \tag{10}
\end{equation*}
$$

Then we will have

$$
\begin{equation*}
u=x^{m} J_{1}(\eta), v=x^{\frac{(2 n-1) m-n}{n+1}} J_{2}(\eta), \eta=y x^{\frac{(2-n) m-1}{n+1}} \tag{11}
\end{equation*}
$$

We can demonstrate in the conventional manner [5] that the condition of conservation of momentum exists along the jet, i.e.,

$$
\int_{-\infty}^{\infty} u^{2} d y=2 \int_{0}^{\infty} u^{2} d y=1
$$

which, with consideration of (11), assumes the form

$$
\begin{equation*}
2 \int_{0}^{\infty} J_{1}^{2}(\eta) d \eta=1 \tag{12}
\end{equation*}
$$

Substituting (11) into (9) with consideration of (12), with the usual boundary conditions [5] implicit, after introduction of the stream function

$$
\begin{equation*}
J_{1}=f^{\prime}, J_{2}=-\frac{1}{3 n} f+\frac{2}{3 n} \eta f^{\prime} \tag{13}
\end{equation*}
$$

we will have the boundary problem for the determination of f :

$$
\begin{gather*}
\left|f^{\prime \prime}\right|^{n-1} f^{\prime \prime \prime}+\frac{1}{3 n}\left(f f^{\prime \prime}+f^{\prime 2}\right)=0, \\
f(0)=f^{\prime \prime}(0)=0, f^{\prime}(\infty)=0,2 \int_{0}^{\infty} f^{\prime 2} d \eta=1 . \tag{14}
\end{gather*}
$$

Since $f^{\prime \prime} \leq 0$ in the submerged jet, it is convenient to carry out the following substitution of variables:

$$
\varphi=-f, \quad \eta=\eta
$$

subsequent to which Eq. (14) assumes the form

$$
\begin{equation*}
\varphi^{\prime \prime n-1} \varphi^{\prime \prime \prime}-\frac{1}{3 n}\left(\varphi \varphi^{\prime \prime}+\varphi^{\prime 2}\right)=0 \tag{15}
\end{equation*}
$$

The integration of Eq. (15) with consideration of the boundary conditions in (14) leads to the following formula for the determination of the velocity profile:

$$
\begin{equation*}
\varphi^{\prime}=(-1)^{\frac{n}{2 n-1}}\left[c-\frac{(2 n-1) \varphi^{\frac{n+1}{n}}}{\sqrt[n]{3}(n+1)}\right]^{\frac{n}{2 n-1}} . \tag{16}
\end{equation*}
$$

Here c is the magnitude of the velocity at the jet axis. Analysis of formula (16) shows that analytical solutions with physical significance do not exist for all n. When $\mathrm{n}<1$ the velocity profiles tend asymptotically toward zero as the argument approaches infinity, while for $n>1$ the asymptotic property is disrupted. In this connection, certain of the results from [7] are cast in doubt.

Since Eq. (15) is invariant with respect to the similarity transform

$$
\Phi=\gamma^{\frac{1-2 n}{2-n}} \varphi, \quad \eta=\gamma \xi
$$

we can turn from the boundary problem (15) and (14) to the equivalent Cauchy problem

$$
\begin{gather*}
\Phi^{m n-1} \Phi^{\prime \prime \prime}-\frac{1}{3 n}\left(\Phi \Phi^{\prime \prime}+\Phi^{\prime 2}\right)=0 \\
\Phi(0)=\Phi^{\prime \prime}(0)=0, \Phi^{\prime}(0)=-1 \tag{17}
\end{gather*}
$$

whose solution permits us to determine the unknown parameter γ according to the formula

$$
\begin{equation*}
\gamma=\frac{1}{\left[2 \int_{0}^{\infty} \Phi^{\prime 2} d \xi\right]^{\frac{n-2}{3 n}}} . \tag{18}
\end{equation*}
$$

We note that near zero Eq. (17) exhibits a singularity, which is a serious inconvenience in numerical calculation. However, as $\xi \rightarrow 0, \Phi^{\prime} \rightarrow-1, \Phi^{n} \rightarrow 0, \Phi \rightarrow 0$, Eq. (17) is equivalent to the following:

$$
\begin{equation*}
\Phi^{\prime \prime n-1} \Phi^{\prime \prime}-\frac{1}{3 n}=0 \tag{19}
\end{equation*}
$$

Integrating (19), we have a representation for the function Φ near zero:

$$
\begin{equation*}
\Phi=-\xi\left(1-\frac{n^{2}}{\sqrt[n]{3}(n+1)(2 n+1)} \xi^{\frac{n+1}{n}}\right) \tag{20}
\end{equation*}
$$

Now instead of (17) we have an original problem that is convenient for numerical realization:

$$
\begin{gather*}
\Phi^{\prime \prime n-1} \Phi^{\prime \prime \prime}-\frac{1}{3 n}\left(\Phi \Phi^{\prime \prime}+\Phi^{\prime 2}\right)=0, \\
\text { when } \xi=\xi_{0}, \Phi=\Phi_{0}, \Phi^{\prime}=\Phi_{0}^{\prime}, \Phi^{\prime \prime}=\Phi_{0}^{\prime \prime} . \tag{21}
\end{gather*}
$$

The quantities $\Phi_{0}, \Phi_{0}^{\prime}$ and $\Phi_{0}^{\mathbb{N}}$ are determined in this case from formula (20).

System (21) was solved according to the Runge-Kutta formula with automatic selection of the pitch for a specified calculation accuracy on the order of 10^{-6}; the integral in formula (18) was calculated in accordance with the Simpson formula. All of the calculations were carried out on a Ural-2 computer. The quantity ξ_{0} was determined experimentally. We know that with n equal to unity Eq. (14) has an exact solution, and the unknown value of the velocity at the jet axis $f^{9}(0)$ is equal to 0.454 [5]. Assuming the quantity ξ_{0} to be
equal to 10^{-3}, solving (21) numerically, and calculating γ according to (18), we find that $f^{\dagger}(0)$ equals 0.45430 。 We regard this agreement as satisfactory and assume in the following that ξ_{0} is equal to 10^{-3}. For purposes of comparison we present the values of the velocity at the jet axis $f^{?}(0)$ for various values of n :

The figure shows the profiles of the velocity $\Phi^{9}(\xi)$ for several n. Analysis of the cited results shows that with an increase in n there is an increase in the velocity at the jet axis, while for n smaller than unity, the profiles are fuller than when n is larger than unity.

NOTATION

x and y are the longitudinal and transverse coordinate; u and v are the longitudinal and transverse velocities in the boundary layer; p_{ij} is the tensor; s_{ij} is the strain-rate tensor; p is the hydrostatic pressure; I_{1}, I_{2}, and I_{3} are the invariants of the strain-rate tensor.

REFERENCES

1. W. Noll, J. Rational Mech. Anal., 4, 3, 1955.
2. C. Truesdell, J. Math. Pure Appl. , 9, 29, 215, 1950.
3. G. V. Vinogradov, A. A. Malkov, and N. V. Tyabin, Izv. AN SSSR, OTN, no. 2, 1960.
4. S. Y. Lee and W. F. Ames, A. I. Ch. E. Journ. , 12, no. 4, 1966.
5. L. G. Loitsyanskii, The Laminar Boundary Layer [in Russian], Fizmatgiz, 1962.
6. L. V. Ovsyannikov, Group Properties of Differential Equations [in Russian], Izd. Sib. otd. AN SSSR, 1962.
7. J. N. Kapuw, Journ. Physic. Soc. of Japan, 17, no. $8,1962$.

14 June 1967

Polzunov Central BoilerTurbine Institute, Leningrad

