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Power-law fluids are defined as the particular case of Stokes fluids for 
low Truesde11 numbers, To describe motion in a submerged jet we em-  
ploy boundary-layer type equations which are numerically solved on a 
Ural-2 computer. 

w Definit ion of power- law fluids.  In accordance  
with the c lass ica l  concepts,  s t r e s s e s  in a fluid a re  
functions of the spatial  velocity gradient .  According 
to the pr inc ip le  of object ivi ty formula ted  by Noll [1], 
the s t r e s sed  t ensor  in the theological  equation of state 
mus t  be an i sot ropie  function of the s t r a i n - r a t e  ten-  
sor  

Pti = f (sq). (1) 

F lu ids  descr ibed  by Eq. (1) a re  subdivided into two 
c lasses :  R e i n e r - R i v l i n  fluids which exhibit a r e l a xa -  
tion t ime,  and Stokes fluids which exhibit  no r e l axa -  
tion t ime [2]. Fo r  Stokes fluids Eq. (1) a s sume s  the 
pa r t i cu l a r  form 

P ~o Els u. (5) 

In formula  (5) the d imens ion less  pa r a me t e r  Tr  = 
= #0sij/P, known as the Truesde l l  number ,  is the c r i t e -  
r ion  for the appearance of nonl inear  effects. 
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Velocity prof i les  in jet  for cer ta in  values of n: 
1) n =  0.5; 2) 1; 3) 3. 

Pu = f (su, ~o, 0o), 

if sq =0 ,  then pq--~---pSii. (2) 

Here #0 is the constant  of the medium,  and it is ex- 
p re s sed  in units  of viscosi ty;  0 o is a cha rac t e r i s t i c  
t empera tu re  (for example,  the boil ing point); p is the 
hydrosta t ic  p r e s s u r e ;  5ij is the Kronecker  delta. 

Fol lowing the usual  ru le  for expansion in s e r i e s  in 
powers of the tensor  and using the Cayley-Hamil ton  
identi ty,  ins tead of (2) we will have 

pq = Fo6q + FlSii @ F2sikSkl, (3) 

where for an incompress ib l e  fluid F 0 = - p ;  F 1 and F 2 
a re  funct ions of the s t r a i n - r a t e  tensor  invar ianee  I2, 

In the following we will examine the case Tr  << 1, 
when the tensor ia l  nonl inear i ty  in (3) can be neglected,  
and the nonl inear i ty  will be de te rmined  by the coeffi- 
cient  F 1 =f(I i , I~,  Is). For  s impl ic i ty  we will study the 
case 

F~ = lq 12/21T' (6) 

The val idi ty of this re la t ionship  has been confirmed 
exper imenta l ly  in [3]. The rheological  equation (3) now 
a s sume s  the following form: 

Pq = - -  P + I~[ 21~ ]Tsq.  (7) 

In d imens ion less  form,  the boundary- l aye r  equations 
have the following form [4J: 

n 0.5 0.7 1.0 2.0 I 3,0 4.0 

f'(O) 0.18650 0,31100 I0.45430 0.71166 jo.83o24 0,89794 

i" 5.36187 1.48305 0.95785 2.44280 1.00000 0.95455 

13 and the constants  #o and 00. 
Since the complexes 

Eo= F--A, El -- FI , E2-- F~p (4) 
p pc Pc 2 

are  d imens ion less ,  for an incompress ib l e  fluid Eq. 
(3) a s sumes  the following d imens ion le s s  form: 

ou o, o, nl l 
u - - + v  . . . .  + 

Ox @ Ox @ 1  @ oy ] 

Op = o, Ou 0_~_v = 0. (8) 
oy ~ + O~ 

~2. The problem of the submerged jet.  The poss i -  
bi l i ty of ut i l iz ing equations of the boundary- layer  type 
to model motion in a submerged jet  has been validated 
in [5]. Here 0p/0x - 0 and sys tem (8) a s sumes  the 
form 

u a-~ + v  ay @ . ag agJ 

a-5-u + a-c =o .  (9) 
Ox Oy 
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Without ca r ry ing  out the complete group analys is  
of sys tem (9), let  us write out the inf in i tes imal  opera-  
tors  of the s imi l a r i t y  group, with respec t  to which we 
have the invar ianee  

1 0 n - - 1  0 0 
X ~ = - - u - - . + - - v - - + x ~  

2 - - n  Ou 2 - - n  Ov Ox ' 

X~= n-t- 1 0 2n - -1  0 0 
- u + - -  v - -  g 
2 -- n Ou 2 - -  n Ov Og 

Let us find the inva r i an t -g roup  solution de te rmined  
f rom the combinat ion of the opera tors  X 1 and X 2. Ac-  
cording to the general  method [6], this solution mus t  
be de te rmined  from the condition 

kX1 + X2~ O. (i0) 

Then we will have 

(2n--l)m--n (2--n)m--I 

u = x'nJ1 01), v = x "+' J2 (~1), rl - - -yx  n+, (11) 

Here c is the magnitude of the velocity at the je t  axis. 
Analys i s  of fo rmula  (16) shows that analyt ical  solu-  
tions with physical  s ignif icance do not exist  for all n. 
When n < 1 the velocity prof i les  tend asymptot ical ly  
toward zero as the a rgument  approaches infinity, while 
for n > 1 the asymptot ic  proper ty  is disrupted.  In this 
connection, ce r t a in  of the r e su l t s  f rom [7] a re  east  in 
doubt. 

Since Eq. (15) is invar ian t  with respec t  to the s i m -  
i l a r i ty  t r ans fo rm 

1--2n 

we can turn  f rom the boundary problem (15) and (14) 
to the equivalent Cauehy problem 

0 "-~ ( I ) ' "  - -  _ 1  (o~ d)" + d~ '~ ) = O, 
3n 

(9(0) = (I)"(0) = 0, (I)' (0) = - -  1, (17) 

We can demons t ra te  in the conventional manne r  [5] 
that the condition of conservat ion of momentum exists  
along the jet,  i . e . ,  

i u~dg= 2 i u~dg= l, 
- - 0 o  0 

which, with considera t ion of (11), a s sumes  the form 

2 ,~? J~(n)dT1 = 1. (12) 
0 

Substi tuting (11) into (9) with cons idera t ion  of (12), 
with the usual  boundary conditions [5] implici t ,  after  
int roduct ion of the s t r eam function 

whose solution permits us to determine the unknown 

parameter 7 according to the formula 

1 ,~ = (18 )  

2 @ '~ d ~ an 
0 

We note that near zero Eq. (17) exhibits a singularity, 

which is a serious inconvenience in numerical calcu- 

lation. However, as ~0, r ~" ~ 0, @ ~ 0, 

Eq. (17) is equivalent to the following: 

. , , , _ % , , , _ _ _ 1  = 0. (19) 
3n 

Y~=f',J2- l f +  2 f, 
3n ~-n ~ (13) 

In tegrat ing (19), we have a r ep resen ta t ion  for the func-  
tion ~ near  zero: 

we will have the boundary problem for the de t e rmina -  
tion of f :  

It"l"-lt  ' ' + @n (fF' + f'~) =0,  
a~ 

f(o)=f"(o)=o, f'(,~)= o, 2 -j f ' ~ d q  = 1. (14) 
0 

Since f" -< 0 in the submerged jet, it is convenient to 

carry out the following substitution of variables: 

subsequent  to which Eq. (14) a s sumes  the form 

trn--1 , , t _ _ ~  
r 3n (~p~p" + q~'~ ) = 0. (15) 

The in tegrat ion of Eq. (15) with cons idera t ion  of the 
boundary conditions in (14) leads to the following for -  
mula for the de te rmina t ion  of the velocity profi le:  

I n-t-i n 
qg '=( - -1)  2nnl C-- (2n--1)~p ~ 2~1 

~ 3 - ( n  § I) (16) 

( n~ ~+1\ 
r  1 ~/3-(n-t- 1 ) ( 2 n + l )  ~ n ) .  (20) 

Now instead of (17) we have an original problem that is 

convenient for numerical realization: 

r . . . .  1 r  _ ! ( $  $,, + q),~ ) = 0, 
3n 

when ~ = ~0, q) = q)o, qg' = q)0, r @0. (21) 

The quant i t ies  r ~] and ~ are  de te rmined  in this 
case f rom formula  (20). 

System (21) was solved according to the Runge-Kutta  
formula  with automatic  se lec t ion of the pitch for a 
specified calculat ion accuracy  on the order  of 10"6; 
the in tegra l  in formula  (18) was calculated in accord-  
ance with the Simpson formula .  All  of the calculat ions  
were ca r r i ed  out on a Ura l -2  computer.  The quanti ty 
~0 was de te rmined  exper imenta l ly .  We know that with 
n equal to unity Eq. (14) has an exact solution, and 
the unknown value of the veloci ty at the jet  axis f v(0) 
is equal to 0.454 [5]. A s s u m i n g  the quanti ty ~0 to be 
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equal to 10 -3 , solving (21) numerically, and calculat- 

ing "/ according to (18), we find that f'(0) equals 0.45430~ 

We regard this agreement as satisfactory and assume 
in the following that ~0 is equal to 10 -3. For purposes 

of comparison we present the values of the velocity at 
the jet axisf~(0) for various values of n: 

The figure shows the profiles of the velocity r 
for several n. Analysis of the cited results shows that 
with an increase in n there is an increase in the veloc- 

ity at the jet axis, while for n smaller than unity, the 
profiles are fuller than when n is larger than unity. 

NOTATION 

x and y a r e  the longi tudinal  and t r a n s v e r s e  c o o r -  
dinate; u and v a r e  the longi tudinal  and t r a n s v e r s e  
ve loc i t i e s  in the boundary l ayer ;  Pij is  the tensor ;  sij  
is  the s t r a i n - r a t e  tensor ;  p is  the hydros t a t i c  p r e s -  
sure ;  I1, I2, and 13 a re  t h e i n v a r i a n t s o f t h e s t r a i n - r a t e  
tensor .  
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